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FENG Dazheng, BAO Zheng and ZHANG Xianda **

(Key Laboratory for Radar Signal Processing, Xidian University, Xi’an 710071, China)

Received August 3, 2001; revised September 20, 2001

Abstract

A new algorithm for blind source separation is proposed, which only extracts the single independent component at each

stage. The single independent component is acquired by an iterative algorithm for searching for the optimal solution of the defined cost
function. Moreover, all the independent components are obtained by systematic multistage decomposition and multistage reconstruction.
When there is spatially colored noise, the performance of this algorithm is advantageous over jointly approximated diagonalization of eigen-
matrices (JADE). Simulated results show that if the number of source signals is more than 25, its computational complexity is lower than

that of JADE.
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In recent two decades, many blind source sepa-
ration (BSS) algorithms have been proposed. The
representative off-line approaches are the matrix-pen-
cil algorithms based on two correlation or higher-order
cumulant matrices (called eigen matrices), which in-
clude the algorithm for multiple unknown signal ex-
traction (AMUSE )!"'?) and Blind beamforming'®!.
They adopted basically the approach of estimation of
signal parameters via rotational invariance techniques
(ESPRIT)!™!. The matrix-pencil algorithms based on
two eigen matrices usually get all the independent
components fast. Unfortunately, their performance is
inferior to the JADE and the eigenvalues often degen-
51 In order to improve algorithms and to pre-
vent eigenvalue-spectral from degeneracy, Cardoso et
al. proposed JADE technique[5'6]. It starts with
prewhitening, which transforms the response matrix
to some unknown unitary matrix; then to estimate
the unitary matrix by “joint diagonalization” of the
whole set of the fourth-order cumulant or correlation
matrices of the whitened process. Like the Jacobi
techniques in matrix eigenvalue decomposition, the
JADE is also excellent. In Ref. [7], the JADE crite-
rion based on the notion of the “contrast function” is
shown as the least squares solution to joint diagonal-

erate

ization problem. However, since the prewhitening is
dependent on the assumption in which noises are in-
dependently identical distribution (i. i. d.), when
noises are not i.i.d. or the sampling number is limit-
ed, “whitening” scheme is approximately implement-
ed and will increase the additional error®l. Al-

though the improved least squares criterions!”! do not
need assume that noise is i.i.d., to find the optimal
solution is difficult since they are some highly nonlin-
ear function.

Here, a new jointly approximated diagonalization
of a set of eigen (correlation) matrices is proposed.
Even though prewhitening is not implemented, it can
also get all the independent components. Based on
biorthogonality between the left and right eigenvec-
tors and the structural information in a set of eigen
(correlation) matrices, we present a kind of cost
functions for finding the single independent compo-
nent. An optimal solution to the cost functions can ef-
ficiently be obtained by an iteration algorithm. Simu-
lated results show that the iteration algorithm con-
verges to a fixed point within 10 rounds of iteration
on average. By systematic multistage decomposition
and multistage reconstruction one can get all the inde-

8]

pendent components When noise is not i.i.d.,

the proposed algorithm is advantageous over the
JADE techniques[sl. And when the number of inde-
pendent sources is more than 25, the computational
complexity of this algorithm is lower than that of the
JADE.

1 Blind source separation problems and inde-
terminacy

1.1 Signal model

Consider a linear array composed of m sensors.
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Assume that n narrow-band sources centered around
a known frequency impinge on the array from distinct
directions. The m-dimensional data vector received
by the array is expressed as

x(t) = As(z) + n(2), (1)
where A €C™ ™" is the array response matrix, s{(t)
€ C"*! the source signal vector, x(z)€C™*! the ar-
ray output vector, and n(¢)EC™*! the noise vector.
Given T samples of array output vector {x(¢;)}1_,,
the blind source separation problem is to estimate the
array response matrix A from the sampled data

iX(ti)lll and further retrieve the source signals

[s(e)iT.

To solve this problem, we make the following
assumptions.

(i) The unknown response matrix A is full col-
umn rank.

(i1) The source signal vector s(¢) is a stationary
multivariate process, i.e.
Els(t + )s"(e)} = diaglpi(7), , p.(7) ],
(2)
where superscript H denotes the conjugate transpose,
and diag[ * ] indicates the diagonal matrix.

(iii) At most, one of the source signals may be
Gaussian white noise.

(iv) The additive noise vector n (t) is zeros-
mean Gaussian noise independent of the source sig-
nals, i.e.

E{n(t + o)nP(2)} = 8(r)diaglr?, -, 72 ],
(3)

where 8 () is the Kronecker function.

Under the above assumptions, the correlation
matrices of the array output vector have the following
structure:

R.(0)

Efx(e)x"(e)!
Adiag[ p1(0), -+, p,(0)1AH
+ diag[rf, "y 7’3,,]’ (4)
R.(r)= Efx(z + v)x"(2)}
= Adiag[p;(7), ", p.(r)JAH.  (5)

In the following sections, we show how to estimate

the response matrix and the signals {s (¢;) }Ll from

the measured data {x (¢ )}Ll, without a priori

knowledge of the array manifold.

1.2 Indeterminacy of blind identification

In the blind context, fully identifying for the
mixture matrix A is impossible because the exchange
of a fixed scalar factor between a given source signal
and the corresponding column of A does not affect

(9] Even though there is an unde-

the measured data
termined complex constant in each column of A, the
directions of the columns of A can be uniquely deter-
mined. Without loss of generality, let all the columns

be unit vectors.

True indeterminacy arises from degeneration of

[5,6]

eigenvalues™"'. In order to improve estimation, we

should study the simultaneous diagonalization of a set
) . K-1
of eigen matrices{ R, (7;)},_, .

2 Approach for extracting single indepén-
dent component

2.1 Biorthogonality of matrices

-, a,] €EC™, its
Moore-Penrose pseudo inverse is expressed by A" =
la),,a, JHeCm"".
biorthogonality should hold

(a)¥a; = afal = 6(i - j), (6)
where a j+ (j=1,-,n) are called the adjoint vectors
of a;(j=1,-,n).

For matrix A = [ay,

Obviously, the following

2.2 Dimension-reduced processing

By dimension reducing, one can obtain the
n X n squares mixture matrix from the known m X n
(m > n) nonsquares mixture matrix. The ideal di-
mension-reduced matrix T € C™ ™" should satisfy the
condition span( T) = span( A ). Moreover, for sim-
plicity, T should best be selected as a unitary matrix.
In Refs.[1,5], T is specially chosen as the whiten-
ing matrix, which is an approximate dimension-re-
duced matrix gotten only by the eigen value decompo-
sition of R, (0). When there is spatially colored
noise, its precision is low, while that of the dimen-

sion-reduced matrix derived from | R, (7;)1X ' is

K-1

high. Let matrix C = ZR?( 7;,)R,(z;) , then the
i=1

singular value decomposition (SVD) of C is repre-

sented as C = UDUY, where U= [uy, -, u, ] €

C™*™. The number of source signals is determined

by the number of the dominant singular values of C,
then the dimension-reduced matrix is given by T =
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After dimension reducing, the array still obeys a
linear model, i.e.
def
2(¢) = THx(¢) = THAs(¢) + T"n (1)
= Bos(z) + T"n(z), (7)
where By = THA € C"*” is a full-rank squares ma-

trix. Notice that in Eq. (7) the noise is suppressed,
while the signals are maintained.

2.3 Criterion

Define the spatially dimension-reduced correla-
tion matrices as

Ry(0)= Ef{z(t)z"(s)}
Bodiag[ p,(0), -+, p,(0) 1By
+ THdiag[rf,"',rfn]T, (8)
Ry(z)= Elz(t + v)z"(s)|

= Bodiag[ py(7), ", p,(t) 1B}

Zp,—(r)bo,-b?i, T # 0. (9)
i=1

Il

Let b0+,. be the adjoint vector of by;. It follows from

(6) that

Ro(t)by, = pi(t)bg;, RG(z)by, = o) (t)by;.
(10)

Thus, we have the criterion for extracting the single

independent component as follows

min]z(w, C1s '™y CK—I)
K-1

= Z || RO(Tk)w - CkRO(O)w ” 2’ (11)

where 7, 70(,=1). If w or cq, =+, cx —; are fixed,
this criterion is an aquadratic function. While, the
least square criterion defined by Wax and Anul”! is of
the 4th power, even though the elements of the diag-
onal matrix are fixed.

2.4 Tracking single independent component

The iteration for finding the weight vector starts
with a randomly generated initial value of w. In order
to get the better estimate, the first principal compo-
nent of Ry(0) can be chosen as the initial value of w.
At the kth step, a set of parameters is first computed
such that || Ro(7,) w — ¢,Ro(0) w || ? is minimized.
Thus, for £=1,2, -, the iterating steps are as fol-
lows.

(i) Compute
ci(k) =[Ro(O)w(k — 1)
s [Ro(z)w(k —1)]

/| Re(0)w(k — 1) 11 % (12)

(ii) find unit-norm weight vector w(%) to make

W) (5 TRo() — (B Ro(0)

* [Ro(7;) — c;(B)Ro(0)] | w(k) (13)

be minimized, i.e. let w( %) be equal to the eigen-
vector associated with the smallest eigenvalue of the
following matrix

K-1
C(k) = Z[Ro(fi) ~ c;(k)Ro(0) 11

« [Ro(7;) = c;(RE)RG(0)]; (14)

(iii) repeat the above two steps till || w(k) —

w(k —1) || <e (in our calculations ¢ =10~ '?), and
take bO+ =w(k).

On computing, at each step of (i) and (ii), only
a least squares problem is accurately solved. It must
be mentioned that the problem of the convergence and
convergent speed of the above iteration is still un-
solved. Simulated results show that the iteration algo-
rithm converges to a fixed point within about 10
rounds of iteration on average.

2.5 Determination of single independent component

Once b, is obtained, it can be known from the
biorthogonality that by is equal to the eigenvector as-

sociated with the largest eigenvalue of matrix F, =
K-1

2 [Ro()bg J[Ro () by 1M

3  Multiple independent component extrac-
tion by multistage decomposition

3.1 First stage decomposition

Once a column of by and its adjoint vector bo+ are
gotten, the component p () bobgI in Ro(t) can be
removed by Ro(7) = Ry(z) — [Ro(7) by ] b?,
where bg'by = 1. Note that Ro(z) is full rank and
its rank is n — 1. In order to improve the computa-
tional efficiency for extracting the next independent
component, Ro(7) should be reduced to (n — 1) X
(n — 1) matrix, which can not only prevent the
weight vector from converging to the already obtained
independent component b but also improve the com-
putational efficiency.

From biorthogonality, we have Ro () b, =0,
which means that span[ Ry (7)1 _1 bo+ . And, from

&
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the Householder transformation matrix associated

. + . . -
with vector b, , we can get the following dimension-
reduced matrix:

Ti=[0 I,,]1-by(b, +e)/(1+by)

€ (15)
where I, - denotes the (n —1) X (# — 1) identity
matrix, 0 is (n —1) zero vector, e;=[1,0,-+-,0]7

ER"™ . If by =[bg, -, by, 17, then b, = [bg,,
-, bg,—31T. It is easy to show that Tib, =0, thus
T, lies in the orthogonal subspace to bo+ . Even
though R( ) includes noise, we have also span[ T ]
=span[Ro(z)]. This shows that T, is an ideal and
efficient dimension-reduced matrix. Hence, the new
dimension-reduced correlation matrix is given by
Ri(t) = T;Ro(2)T} € C"D*n=D 1 (16)

The first stage of decomposition is reached.
3.2 Multistage decomposition

The new (7 — 1)-dimensional independent com-
ponent can be estimated from R, (7). Except that
the dimension of independent component is reduced
from n to {n — 1), the process for finding new inde-
pendent component is the same as the above decompo-
sition. Thus, from R;(r), an independent compo-
nent b; and its adjoint vector bl+ can be derived by
the method given in Sec. 2.4. Decomposition process
is finished till stage (n —2).

Given g (1<<¢<<n —2), Ry(z;) (i=0,,K
—1) in (12), (13) and (14) are replaced by R,(z;)
(i=0,-, K —1). Notice that the weight vector is
(n — ¢ +1)-dimensional, b, and b; can be gotten by
a similar approach. Once the weight vector converges

to a fixed vector, b = w(k) and b, is obtained by

q
making

K-1
b’;{Z;[Rq(ri)b;][Rq(r,-)b;]H}bq
be maximized.

The dimension-reduced matrix should satisfy
Ty1= null(b;) and may be computed using the
method similar to computing T;. A series of the di-
mension-reduced eigen matrices are recursively com-
puted by

R (t) = T,IR,(7) - (R (z)b,)bh1TY.
(17)
When g=n—2, R(,-1(7) are the 2 X2 eigen ma-

trices. Given b(, ) and b(+n_2) involved in C?, the

last independent component situated in C? can unique-
ly be achieved by the following biorthogonality rela-
tion b, 5y L bin-1) and b(,-2 L b, ;. This
means that the last two independent components can
simultaneously be gotten by one step.

3.3 Multistage reconstruction

Once the dimension-reduced independent compo-
nents are obtained, the full-dimension independent
components can be reconstructed by the following
process:

Let B, = [b(,,_z) b(,,_l)] GCZXZ, then
Biy-1y=[b(-1) § TBJEC 0t DXtnmarl) e,
B():[bo T?Bl]GC"X".

Since T, is the last (n — ¢) rowsof (n —g+1)
X (n — g +1) Householder matrix, the matrix prod-
uct TI:Bq is achieved by multiplication of matrix with
vector. Therefore, the reconstructing process is com-
putationally efficient.

Finally, the mixture matrix is computed by A =
TB,, and the source signals are estimated by $(z) =
AT x(1)=B,'2(1).

4 Simulations

The performance index (also called the estima-
tion error) in this Section is given in Refs. [5,9].

Example 1. An array of 6 sensors receives the
three independent source signals. The mixture matrix
isA=[a(0y),a(8;),a(83)], where a(8) =11,
exp( — jrcos(8)), *++, exp( — jSncos(0))]T denotes
the response vector of a six-element uniform linear ar-
ray with half wavelength sensor spacing. The three
deterministic independent sources are defined by

s1(2) =4/2sin(600¢ + Scos(60)), s,(z) = 2sin(350)

X sin(30¢) and s5(z) =/2sin(150¢). The arrival di-
rections of the three sources are 80°, 90°and 100°, re-
spectively. Array receives the above three source sig-
nals together with stationary complex spatially colored
noises, and SNR is 20 dB. The sampled number is
1000. The source signals shown in Fig. 1 are esti-
mated by jointly approximate diagonalization of the
five eigen matrices.

Example 2. In order to test the computational
efficiency of the proposed method, the mixture ma-
trix A = randn (151, 25) + i randn (151, 25) was




382

Progress in Natural Science Vol.12 No.5 2002

Amplitude
[

VAVAVAVE
s AVAVAVA o PAVAN

0 004 008 o012 016
Time (s)

Amplitude
=)

Amplitude
=)

-2

Fig. 1. The three estimated source signals of s;(z), s3(z) and
52(¢), respectively, from top to bottom.

randomly generated and was kept unchanging in the
independent trials. Five eigen matrices were generat-
ed randomly in the twenty independent trials by the
following equations:
R, (0) = Aabs[diag(randn(25,1)
+j*randn(25,1))]A"H
+ diag(randn(151,1)),
R,(r) = Adiag(randn(25,1)
+ j*randn(25,1)) A",
The estimation error of the array response is shown in
Fig. 2, and the computational time added by Matlab
software is given in Fig. 3. It shows that the pro-
posed method improves the estimated performance in
20

Errors (dB)

Proposed algorithm

4 8 12 16 20
Independent trial number

Fig. 2. Estimated Error of two methods versus independent trial

number.

the presence of the spatially colored noises. In the
case with more than 25 sources, its computational ef-
ficiency is obviously better than that of the JADE.
Here, the iteration algorithm converges to a fixed
point for 9.64 rounds of iteration on average.

20
16}
E 12¢
E
=
8 L
4t
Proposed Algorithm
0 A ) 16 20
Independent trial number
Fig. 3. Computational time of two methods versus independent

trial number.
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